既設橋梁の耐震補強

目的

1995年兵庫県南部地震では、橋梁構造物においても橋脚の倒壊、橋桁の落下を始め、多くの被害をもたらしました。特に、昭和55年の道路橋示方書よりも古い基準を適用した橋梁に対して、被害事例が多くありました。その後2011年に東日本大震災、2016年には熊本地震など大規模な地震が発生しており、社会的にも地震への関心が高まっています。

また、近い将来東海地区で起きる可能性が高いと考えられる東海地震、南海地震、南海地震等の大地震に対しても2002年4月に中央防災会議が「東海地震に係る地震防災対策強化地域」の見直しを行い、強化地域が大きく拡大されています。

橋梁の地震対策は、踏道橋や踏線橋等の落橋による二次災害の防止や緊急輸送道路の確保、災害時の沿道住民等の避難路の確保などが課題といえます。しかし、大小すべての橋に地震対策を行うことは財政的にも非常に困難と考えられますので、耐震補強の優先順位を始めとして、最適な耐震補強のご提案を行います。

内容

〇耐震補強優先順位の設定（補強対象橋梁の選定）
〇既設橋梁の資料整理
〇耐震補強対策工法の提案
〇耐震補強設計

技術ポイント

（1）耐震補強優先順位

これまでは直轄道路を始めとして、二次災害の起きる可能性の高い踏線橋や踏道橋から優先的に既設橋梁の耐震補強が実施されてきました。一方、河川橋等に対しては緊急輸送道路など重要度の高い橋や、地域防災上避難活動に不可欠な橋等様々な要因があり、限られた予算の中で実施可能な耐震補強を実施する橋梁の優先順位付けを行うことが必要と思われます。これらを必要に応じてサポート致します。

（2）既設橋梁の資料整理

耐震補強設計用に、既設橋梁の資料を整理致します。架橋年次の古い橋梁では、台帳のみで竣工図書（図面・計算書）などの資料が十分にない場合があります。そうした場合には、現橋測量等を実施して構造寸法を始めとして測定する必要があります。更に、全く資料がないような場合は、補足測量に加えてはつり調査等を行い、設計年次の基準に基づく復元設計を実施して、現在の配筋状態などを再現する必要があります。
（3）耐震補強工法の提案

現行の道路橋示方書に準拠した耐震補強設計を行います。

一般的に耐震補強対策は大きく、橋脚を落下させない「①落橋防止システムの設置」と、橋脚の崩壊を防止する「②橋脚補強」とに分かれます。構造が特殊な場合や補強工法に制約がある場合等は、支承を交換して橋全体を耐震性能を高める、免震特性を向上させます。

図-2 耐震補強対策の事例

事業の流れ（当社の実施範囲）

本件における当社の標準的な実施範囲は下図の点線範囲内（水色部）となります。なお、二重線部（黄色部）については、個別にご相談させていただきます。

当社実績

（耐震診断、橋脚耐震補強設計、橋梁耐震補強システム）

- H30「道路橋リニューアル工事の橋梁耐震補強予備設計業務」愛知県知多建設事務所
- H29「平成29年度 祐橋国道管内橋梁補強補修設計業務」国土交通省中部地方整備局愛知国道事務所
- H28「平成28年度 橋梁耐震補強・補修設計業務委託」神奈川県相模原市
- H27「平成27年度 橋梁補修工事（防災・安全交付金 P48）の内設計業務委託」愛知県東三河建設
- H26「隠戸橋ほか耐震補強及び補修設計業務」岐阜県可児郡田庄町
- H25「富士・沼津維持工事橋梁補強補修設計業務」国土交通省中部地方整備局静岡国道事務所
- H24-25「橋梁耐震化計画策定業務委託」愛知県刈谷市

玉野総合コンサルタント株式会社

お問い合わせ先：事務取扱担当 TEL: 052-979-3960 / FAX: 052-979-3970